The functions GEVfisher()
and GEVquasi()
each define the generalized
extreme value (GEV) family distribution, a three parameter distribution, for
a gamlss.dist::gamlss.family()
object to
be used in GAMLSS fitting using the function
gamlss::gamlss()
. The only difference
between GEVfisher()
and GEVquasi()
is the form of scoring method used to
define the weights used in the fitting algorithm. Fisher's scoring,
based on the expected Fisher information is used in GEVfisher()
, whereas
a quasi-Newton scoring, based on the cross products of the first derivatives
of the log-likelihood, is used in GEVquasi()
. The functions
dGEV
, pGEV
, qGEV
and rGEV
define the density, distribution function,
quantile function and random generation for the specific parameterization of
the generalized extreme value distribution given in Details below.
Usage
GEVfisher(mu.link = "identity", sigma.link = "log", nu.link = "identity")
GEVquasi(mu.link = "identity", sigma.link = "log", nu.link = "identity")
dGEV(x, mu = 0, sigma = 1, nu = 0, log = FALSE)
pGEV(q, mu = 0, sigma = 1, nu = 0, lower.tail = TRUE, log.p = FALSE)
qGEV(p, mu = 0, sigma = 1, nu = 0, lower.tail = TRUE, log.p = FALSE)
rGEV(n, mu = 0, sigma = 1, nu = 0)
Arguments
- mu.link
Defines the
mu.link
, with"identity"
link as the default for themu
parameter.- sigma.link
Defines the
sigma.link
, with"log"
link as the default for thesigma
parameter.- nu.link
Defines the
nu.link
, with"identity"
link as the default for thenu
parameter.- x, q
Vector of quantiles.
- mu, sigma, nu
Vectors of location, scale and shape parameter values.
- log, log.p
Logical. If
TRUE
, probabilitieseqn{p}
are given as \(\log(p)\).- lower.tail
Logical. If
TRUE
(the default), probabilities are \(P[X \leq x]\), otherwise, \(P[X > x]\).- p
Vector of probabilities.
- n
Number of observations. If
length(n) > 1
, the length is taken to be the number required.
Value
GEVfisher()
and GEVquasi()
each return a
gamlss.dist::gamlss.family()
object
which can be used to fit a regression model with a GEV response
distribution using the
gamlss::gamlss()
function. dGEV()
gives the density,
pGEV()
gives the distribution function, qGEV()
gives the quantile
function, and rGEV()
generates random deviates.
Details
The distribution function of a GEV distribution with parameters
loc
= \(\mu\), scale
= \(\sigma (> 0)\) and
shape
= \(\xi\) (\(= \nu\)) is
$$F(x) = P(X \leq x) = \exp\left\{ -\left[ 1+\xi\left(\frac{x-\mu}{\sigma}\right)
\right]_+^{-1/\xi} \right\},$$
where \(x_+ = \max(x, 0)\). If \(\xi = 0\) the
distribution function is defined as the limit as \(\xi\) tends to zero.
The support of the distribution depends on \(\xi\): it is
\(x \leq \mu - \sigma / \xi\) for \(\xi < 0\);
\(x \geq \mu - \sigma / \xi\) for \(\xi > 0\);
and \(x\) is unbounded for \(\xi = 0\).
See
https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution
and/or Chapter 3 of Coles (2001) for further information.
For each observation in the data, the restriction that \(\xi > -1/2\) is imposed, which is necessary for the usual asymptotic likelihood theory to be applicable.
Examples
See the examples in fitGEV()
.
References
Coles, S. G. (2001) An Introduction to Statistical Modeling of Extreme Values, Springer-Verlag, London. Chapter 3: doi:10.1007/978-1-4471-3675-0_3