anova method for objects of class "lax".
Compares two or more nested models using the adjusted likelihood ratio
test statistic (ALRTS) described in Section 3.5 of Chandler and Bate (2007).
The nesting must result from the simple constraint that a subset of the
parameters of the larger model is held fixed.
Usage
# S3 method for class 'lax'
anova(object, object2, ...)Arguments
- object
- An object of class - "lax", inheriting from class- "chandwich", returned by- alogLik.
- object2
- An object of class - "lax", inheriting from class- "chandwich", returned by- alogLik.
- ...
- Further objects of class - "lax"and/or arguments to be passed to- anova.chandwich, and then on to- compare_models, in particular- type, which chooses the type of adjustment.
Value
An object of class "anova" inheriting from class
 "data.frame", with four columns:
- Model.Df
- The number of parameters in the model 
- Df
- The decrease in the number of parameter compared the model in the previous row 
- ALRTS
- The adjusted likelihood ratio test statistic 
- Pr(>ALRTS)
- The p-value associated with the test that the model is a valid simplification of the model in the previous row. 
The row names are the names of the model objects.
Details
The objects of class "lax" need not be provided in nested
  order: they will be ordered inside anova.lax based on the
  values of attr(., "p_current").
References
Chandler, R. E. and Bate, S. (2007). Inference for clustered data using the independence loglikelihood. Biometrika, 94(1), 167-183. doi:10.1093/biomet/asm015
See also
anova.chandwich: the anova method
  on which anova.lax is based.
alogLik: loglikelihood adjustment for model fits.
Examples
got_evd <- requireNamespace("evd", quietly = TRUE)
if (got_evd) {
  library(evd)
  small <- fgev(ow$temp, nsloc = ow[, "loc"])
  adj_small <- alogLik(small, cluster = ow$year)
  tiny <- fgev(ow$temp)
  adj_tiny <- alogLik(tiny, cluster = ow$year)
  anova(adj_small, adj_tiny)
  set.seed(4082019)
  uvdata <- evd::rgev(100, loc = 0.13, scale = 1.1, shape = 0.2)
  M0 <- fgev(uvdata)
  M1 <- fgev(uvdata, nsloc = (-49:50)/100)
  adj0 <- alogLik(M0)
  adj1 <- alogLik(M1)
  anova(adj1, adj0)
}
#> Analysis of (Adjusted) Deviance Table
#> 
#>      Model.Df Df ALRTS Pr(>ALRTS)
#> adj1        4                    
#> adj0        3  1 1.421     0.2332
got_extRemes <- requireNamespace("extRemes", quietly = TRUE)
if (got_extRemes) {
  library(extRemes)
  large <- fevd(temp, ow, location.fun = ~ loc, scale.fun = ~ loc,
                shape.fun = ~ loc)
  medium <- fevd(temp, ow, location.fun = ~ loc, scale.fun = ~ loc)
  small <- fevd(temp, ow, location.fun = ~ loc)
  tiny <- fevd(temp, ow)
  adj_large <- alogLik(large, cluster = ow$year)
  adj_medium <- alogLik(medium, cluster = ow$year)
  adj_small <- alogLik(small, cluster = ow$year)
  adj_tiny <- alogLik(tiny, cluster = ow$year)
  anova(adj_large, adj_medium, adj_small, adj_tiny)
}
#> Loading required package: Lmoments
#> Loading required package: distillery
#> 
#> Attaching package: 'extRemes'
#> The following object is masked from 'package:evd':
#> 
#>     mrlplot
#> The following objects are masked from 'package:stats':
#> 
#>     qqnorm, qqplot
#> Analysis of (Adjusted) Deviance Table
#> 
#>            Model.Df Df  ALRTS Pr(>ALRTS)    
#> adj_large         6                         
#> adj_medium        5  1  6.276    0.01224 *  
#> adj_small         4  1  4.198    0.04048 *  
#> adj_tiny          3  1 80.697    < 2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1