These are a slightly modified versions of the gev.fit,
gpd.fit, pp.fit and
rlarg.fit functions in the ismev
package.
The modification is to add to the returned object regression design matrices
for the parameters of the model.  That is,
xdat, ydat, mulink, siglink, shlink and matrices
mumat, sigmat, shmat for the location, scale and shape parameters
gev.fit, pp.fit and
rlarg.fit, and xdat,
ydat, siglink, shlink and matrices sigmat, shmat for the
scale and shape parameters for gpd.fit.
Usage
gev_refit(
  xdat,
  ydat = NULL,
  mul = NULL,
  sigl = NULL,
  shl = NULL,
  mulink = identity,
  siglink = identity,
  shlink = identity,
  muinit = NULL,
  siginit = NULL,
  shinit = NULL,
  show = TRUE,
  method = "Nelder-Mead",
  maxit = 10000,
  ...
)
gpd_refit(
  xdat,
  threshold,
  npy = 365,
  ydat = NULL,
  sigl = NULL,
  shl = NULL,
  siglink = identity,
  shlink = identity,
  siginit = NULL,
  shinit = NULL,
  show = TRUE,
  method = "Nelder-Mead",
  maxit = 10000,
  ...
)
pp_refit(
  xdat,
  threshold,
  npy = 365,
  ydat = NULL,
  mul = NULL,
  sigl = NULL,
  shl = NULL,
  mulink = identity,
  siglink = identity,
  shlink = identity,
  muinit = NULL,
  siginit = NULL,
  shinit = NULL,
  show = TRUE,
  method = "Nelder-Mead",
  maxit = 10000,
  ...
)
rlarg_refit(
  xdat,
  r = dim(xdat)[2],
  ydat = NULL,
  mul = NULL,
  sigl = NULL,
  shl = NULL,
  mulink = identity,
  siglink = identity,
  shlink = identity,
  muinit = NULL,
  siginit = NULL,
  shinit = NULL,
  show = TRUE,
  method = "Nelder-Mead",
  maxit = 10000,
  ...
)Arguments
- xdat
- A numeric vector of data to be fitted. 
- ydat
- A matrix of covariates for generalized linear modelling of the parameters (or - NULL(the default) for stationary fitting). The number of rows should be the same as the length of- xdat.
- mul, sigl, shl
- Numeric vectors of integers, giving the columns of - ydatthat contain covariates for generalized linear modelling of the location, scale and shape parameters repectively (or- NULL(the default) if the corresponding parameter is stationary).
- mulink, siglink, shlink
- Inverse link functions for generalized linear modelling of the location, scale and shape parameters repectively. 
- muinit, siginit, shinit
- numeric of length equal to total number of parameters used to model the location, scale or shape parameter(s), resp. See Details section for default (NULL) initial values. 
- show
- Logical; if - TRUE(the default), print details of the fit.
- method
- The optimization method (see - optimfor details).
- maxit
- The maximum number of iterations. 
- ...
- Other control parameters for the optimization. These are passed to components of the - controlargument of- optim.
- threshold
- The threshold; a single number or a numeric vector of the same length as - xdat.
- npy
- The number of observations per year/block. 
- r
- The largest - rorder statistics are used for the fitted model.
References
Heffernan, J. E. and Stephenson, A. G. (2018). ismev: An Introduction to Statistical Modeling of Extreme Values. R package version 1.42. https://CRAN.R-project.org/package=ismev.
Examples
# We need the ismev package
got_ismev <- requireNamespace("ismev", quietly = TRUE)
if (got_ismev) {
  library(ismev)
  fit1 <- gev.fit(revdbayes::portpirie, show = FALSE)
  ls(fit1)
  fit2 <- gev_refit(revdbayes::portpirie, show = FALSE)
  ls(fit2)
  data(rain)
  fit1 <- gpd.fit(rain, 10)
  ls(fit1)
  fit2 <- gpd_refit(rain, 10)
  ls(fit2)
  fit1 <- pp.fit(rain, 10, show = FALSE)
  ls(fit1)
  fit2 <- pp_refit(rain, 10, show = FALSE)
  ls(fit2)
  data(venice)
  fit1 <- rlarg.fit(venice[, -1], muinit = 120.54, siginit = 12.78,
                   shinit = -0.1129, show = FALSE)
  ls(fit1)
  fit2 <- rlarg_refit(venice[, -1], muinit = 120.54, siginit = 12.78,
                   shinit = -0.1129, show = FALSE)
  ls(fit2)
}
#> $threshold
#> [1] 10
#> 
#> $nexc
#> [1] 2003
#> 
#> $conv
#> [1] 0
#> 
#> $nllh
#> [1] 6123.465
#> 
#> $mle
#> [1] 7.43768624 0.05045225
#> 
#> $rate
#> [1] 0.1142547
#> 
#> $se
#> [1] 0.23606472 0.02256649
#> 
#> $threshold
#> [1] 10
#> 
#> $nexc
#> [1] 2003
#> 
#> $conv
#> [1] 0
#> 
#> $nllh
#> [1] 6123.465
#> 
#> $mle
#> [1] 7.43768624 0.05045225
#> 
#> $rate
#> [1] 0.1142547
#> 
#> $se
#> [1] 0.23606472 0.02256649
#> 
#>  [1] "conv"    "cov"     "data"    "link"    "mle"     "model"   "mulink" 
#>  [8] "mumat"   "nllh"    "r"       "se"      "shlink"  "shmat"   "siglink"
#> [15] "sigmat"  "trans"   "vals"    "xdat"