These are a slightly modified versions of the gev.fit
,
gpd.fit
, pp.fit
and
rlarg.fit
functions in the ismev
package.
The modification is to add to the returned object regression design matrices
for the parameters of the model. That is,
xdat, ydat, mulink, siglink, shlink
and matrices
mumat, sigmat, shmat
for the location, scale and shape parameters
gev.fit
, pp.fit
and
rlarg.fit
, and xdat
,
ydat, siglink, shlink
and matrices sigmat, shmat
for the
scale and shape parameters for gpd.fit
.
gev_refit(
xdat,
ydat = NULL,
mul = NULL,
sigl = NULL,
shl = NULL,
mulink = identity,
siglink = identity,
shlink = identity,
muinit = NULL,
siginit = NULL,
shinit = NULL,
show = TRUE,
method = "Nelder-Mead",
maxit = 10000,
...
)
gpd_refit(
xdat,
threshold,
npy = 365,
ydat = NULL,
sigl = NULL,
shl = NULL,
siglink = identity,
shlink = identity,
siginit = NULL,
shinit = NULL,
show = TRUE,
method = "Nelder-Mead",
maxit = 10000,
...
)
pp_refit(
xdat,
threshold,
npy = 365,
ydat = NULL,
mul = NULL,
sigl = NULL,
shl = NULL,
mulink = identity,
siglink = identity,
shlink = identity,
muinit = NULL,
siginit = NULL,
shinit = NULL,
show = TRUE,
method = "Nelder-Mead",
maxit = 10000,
...
)
rlarg_refit(
xdat,
r = dim(xdat)[2],
ydat = NULL,
mul = NULL,
sigl = NULL,
shl = NULL,
mulink = identity,
siglink = identity,
shlink = identity,
muinit = NULL,
siginit = NULL,
shinit = NULL,
show = TRUE,
method = "Nelder-Mead",
maxit = 10000,
...
)
A numeric vector of data to be fitted.
A matrix of covariates for generalized linear modelling
of the parameters (or NULL
(the default) for stationary
fitting). The number of rows should be the same as the length
of xdat
.
Numeric vectors of integers, giving the columns
of ydat
that contain covariates for generalized linear
modelling of the location, scale and shape parameters repectively
(or NULL
(the default) if the corresponding parameter is
stationary).
Inverse link functions for generalized linear modelling of the location, scale and shape parameters repectively.
numeric of length equal to total number of parameters used to model the location, scale or shape parameter(s), resp. See Details section for default (NULL) initial values.
Logical; if TRUE
(the default), print details of
the fit.
The optimization method (see optim
for
details).
The maximum number of iterations.
Other control parameters for the optimization. These
are passed to components of the control
argument of
optim
.
The threshold; a single number or a numeric
vector of the same length as xdat
.
The number of observations per year/block.
The largest r
order statistics are used for
the fitted model.
Heffernan, J. E. and Stephenson, A. G. (2018). ismev: An Introduction to Statistical Modeling of Extreme Values. R package version 1.42. https://CRAN.R-project.org/package=ismev.
# We need the ismev package
got_ismev <- requireNamespace("ismev", quietly = TRUE)
if (got_ismev) {
library(ismev)
fit1 <- gev.fit(revdbayes::portpirie, show = FALSE)
ls(fit1)
fit2 <- gev_refit(revdbayes::portpirie, show = FALSE)
ls(fit2)
data(rain)
fit1 <- gpd.fit(rain, 10)
ls(fit1)
fit2 <- gpd_refit(rain, 10)
ls(fit2)
fit1 <- pp.fit(rain, 10, show = FALSE)
ls(fit1)
fit2 <- pp_refit(rain, 10, show = FALSE)
ls(fit2)
data(venice)
fit1 <- rlarg.fit(venice[, -1], muinit = 120.54, siginit = 12.78,
shinit = -0.1129, show = FALSE)
ls(fit1)
fit2 <- rlarg_refit(venice[, -1], muinit = 120.54, siginit = 12.78,
shinit = -0.1129, show = FALSE)
ls(fit2)
}
#> $threshold
#> [1] 10
#>
#> $nexc
#> [1] 2003
#>
#> $conv
#> [1] 0
#>
#> $nllh
#> [1] 6123.465
#>
#> $mle
#> [1] 7.43768624 0.05045225
#>
#> $rate
#> [1] 0.1142547
#>
#> $se
#> [1] 0.23606472 0.02256649
#>
#> $threshold
#> [1] 10
#>
#> $nexc
#> [1] 2003
#>
#> $conv
#> [1] 0
#>
#> $nllh
#> [1] 6123.465
#>
#> $mle
#> [1] 7.43768624 0.05045225
#>
#> $rate
#> [1] 0.1142547
#>
#> $se
#> [1] 0.23606472 0.02256649
#>
#> [1] "conv" "cov" "data" "link" "mle" "model" "mulink"
#> [8] "mumat" "nllh" "r" "se" "shlink" "shmat" "siglink"
#> [15] "sigmat" "trans" "vals" "xdat"