S3 alogLik
method to perform loglikelihood adjustment for fitted
extreme value model objects returned from the function
fevd
in the
extRemes
package.
The model must have been fitted using maximum likelihood estimation.
# S3 method for fevd
alogLik(x, cluster = NULL, use_vcov = TRUE, ...)
A fitted model object with certain associated S3 methods. See Details.
A vector or factor indicating from which cluster the
respective log-likelihood contributions from loglik
originate.
The length of cluster
must be consistent with the estfun
method to be used in the estimation of the 'meat' V
of the sandwich
estimator of the covariance matrix of the parameters to be passed to
adjust_loglik
. In most cases, cluster
must have length equal to the number of observations in data. The
exception is the GP (only) model (binom = FALSE
), where the
cluster
may either contain a value for each observation in the raw
data, or for each threshold exceedance in the data.
If cluster
is not supplied (is NULL
) then it is
assumed that each observation forms its own cluster.
See Details for further details.
A logical scalar. Should we use the vcov
S3 method
for x
(if this exists) to estimate the Hessian of the independence
loglikelihood to be passed as the argument H
to
adjust_loglik
?
Otherwise, H
is estimated inside
adjust_loglik
using
optimHess
.
Further arguments to be passed to the functions in the
sandwich package meat
(if cluster = NULL
),
or meatCL
(if cluster
is not
NULL
).
An object inheriting from class "chandwich"
. See
class(x)
is a vector of length 5. The first 3 components are
c("lax", "chandwich", "extRemes")
.
The remaining 2 components depend on the model that was fitted.
The 4th component is: "gev"
if x$type = "GEV"
or
x$type = "Gumbel"
; "gp"
if x$type = "GP"
or
x$type = "Exponential"
; "pp"
if x$type = "PP"
.
The 5th component is
"stat"
if is.fixedfevd = TRUE
and
"nonstat"
if is.fixedfevd = FALSE
.
See alogLik
for details.
Chandler, R. E. and Bate, S. (2007). Inference for clustered data using the independence loglikelihood. Biometrika, 94(1), 167-183. doi:10.1093/biomet/asm015
Suveges, M. and Davison, A. C. (2010) Model misspecification in peaks over threshold analysis, The Annals of Applied Statistics, 4(1), 203-221. doi:10.1214/09-AOAS292
Zeileis (2006) Object-Oriented Computation and Sandwich Estimators. Journal of Statistical Software, 16, 1-16. doi:10.18637/jss.v016.i09
alogLik
: loglikelihood adjustment for model fits.
# We need the extRemes and distillery packages
got_extRemes <- requireNamespace("extRemes", quietly = TRUE)
got_distillery <- requireNamespace("distillery", quietly = TRUE)
if (got_extRemes & got_distillery) {
library(extRemes)
library(distillery)
# Examples from the extRemes::fevd documentation
data(PORTw)
# GEV
fit0 <- fevd(TMX1, PORTw, units = "deg C", use.phi = TRUE)
adj_fit0 <- alogLik(fit0)
summary(adj_fit0)
# GEV regression
fitPORTstdmax <- fevd(TMX1, PORTw, scale.fun = ~STDTMAX, use.phi = TRUE)
adj_fit1 <- alogLik(fitPORTstdmax)
summary(adj_fit1)
fitPORTstdmax2 <- fevd(TMX1, PORTw, location.fun = ~STDTMAX,
scale.fun = ~STDTMAX, use.phi = TRUE)
adj_fit2 <- alogLik(fitPORTstdmax2)
summary(adj_fit2)
anova(adj_fit0, adj_fit1)
anova(adj_fit1, adj_fit2)
anova(adj_fit0, adj_fit2)
anova(adj_fit0, adj_fit1, adj_fit2)
# Gumbel
fit0 <- fevd(TMX1, PORTw, type = "Gumbel", units = "deg C")
adj_fit0 <- alogLik(fit0)
summary(adj_fit0)
# GP
data(damage)
fit1 <- fevd(Dam, damage, threshold = 6, type = "GP",
time.units = "2.05/year")
adj_fit1 <- alogLik(fit1)
summary(adj_fit1)
# Exponential
fit0 <- fevd(Dam, damage, threshold = 6, type="Exponential",
time.units = "2.05/year")
adj_fit0 <- alogLik(fit0)
summary(adj_fit0)
# GP non-constant threshold
data(Fort)
fit <- fevd(Prec, Fort, threshold = 0.475,
threshold.fun = ~I(-0.15 * cos(2 * pi * month / 12)),
type = "GP")
adj_fit <- alogLik(fit)
summary(adj_fit)
# Exponential non-constant threshold
fit <- fevd(Prec, Fort, threshold = 0.475,
threshold.fun = ~I(-0.15 * cos(2 * pi * month / 12)),
type = "Exponential")
adj_fit <- alogLik(fit)
summary(adj_fit)
# PP model
fit <- fevd(Prec, Fort, threshold = 0.475, type = "PP", units = "inches")
adj_fit <- alogLik(fit)
summary(adj_fit)
# PP non-constant threshold
fit <- fevd(Prec, Fort, threshold = 0.475,
threshold.fun=~I(-0.15 * cos(2 * pi * month / 12)),
type = "PP")
adj_fit <- alogLik(fit)
summary(adj_fit)
}
#> MLE SE adj. SE
#> mu0 1.4200 0.04277 0.04286
#> sigma0 0.5226 0.03129 0.03075
#> xi0 0.1162 0.03791 0.03404