Functions to calculate contributions to the score vector from individual observations for a fitted model object.
Usage
# S3 method for class 'Bernoulli'
estfun(x, ...)
# S3 method for class 'GP'
estfun(x, eps = 1e-05, m = 3, ...)Arguments
- x
A fitted model object.
- ...
Further arguments. None are used for
estfun.Bernoulliorestfun.GP.- eps, m
These control the estimation of the observed information in
gpObsInfowhen the GP shape parameter \(\xi\) is very close to zero. In these cases, direct calculation is unreliable.epsis a (small, positive) numeric scalar. If the absolute value of the input value of \(\xi\), that is,pars[2], is smaller thanepsthen we approximate the[2, 2]element using a Taylor series expansion in \(\xi\), evaluated up to and including themth term.
Value
An \(n \times k\) matrix containing contributions to the score function from \(n\) observations for each of the \(k\) parameters.
estfun.Bernoulli: an \(n \times 2\) matrix, where
\(n\) is the sample size, the length of the input data to
fitBernoulli. The column is named prob.
estfun.GP: an \(n \times 2\) matrix, where \(n\) is the
sample size, the length of the input data to fitGP.
The columns are named sigma[u] and xi.
Details
An estfun method is used by
meatCL to calculate the
meat in the sandwich covariance estimator on which
the log-likelihood adjustments in flite are based.
Specifically, meatCL is used to calculate
the argument V passed to adjust_loglik.
See also
Bernoulli for maximum likelihood inference for the
Bernoulli distribution.
generalisedPareto for maximum likelihood inference
for the generalised Pareto distribution.
Examples
library(sandwich)
# estfun.Bernoulli
bfit <- fitBernoulli(c(exdex::cheeseboro) > 45)
head(estfun(bfit))
#> prob
#> [1,] -1.0285
#> [2,] -1.0285
#> [3,] -1.0285
#> [4,] -1.0285
#> [5,] -1.0285
#> [6,] -1.0285
# estfun.generalisedPareto
gpfit <- fitGP(c(exdex::cheeseboro), u = 45)
head(estfun(gpfit))
#> sigma[u] xi
#> [1,] -0.063902582 -0.3512112
#> [2,] -0.086318699 -0.1962096
#> [3,] -0.075227392 -0.2790858
#> [4,] -0.063902582 -0.3512112
#> [5,] -0.003503566 -0.5330688
#> [6,] -0.075227392 -0.2790858