Generic function for calculating log-likelihood contributions from individual observations for a fitted model object.
logLikVector(object, ...)
# S3 method for Bernoulli
logLikVector(object, pars = NULL, ...)
# S3 method for GP
logLikVector(object, pars = NULL, ...)
# S3 method for logLikVector
logLik(object, ...)
A fitted model object.
Further arguments. None are used for either
logLikVector.Bernoulli
or logLikVector.GP
.
A numeric parameter vector.
For logLikVector.Bernoulli
this is a vector of length 1 containing
a value of the Bernoulli success probability.
For logLikVector.GP
this is a numeric vector of length 2 containing
the values of the generalised Pareto scale (\(\sigma_u\)) and shape
(\(\xi\)) parameters.
For logLikVector
: an object of class logLikVec
.
This is a numeric vector of length \(n\) containing contributions to the
the independence log-likelihood from \(n\) observations, with attributes
"df"
(degrees of freedom), giving the number of estimated
parameters in the model, and "nobs"
, giving the number observations
used to perform the estimation.
For logLik.logLikVector
: an object of class logLik
. This is
a number with the attributes "df"
and "nobs"
as described
above.
A logLikVector
method is used to construct a log-likelihood
function to supply as the argument loglik
to the function
adjust_loglik
, which performs log-likelihood
adjustment for parts 1 and 2 of the inferences performed by
flite
.
The logLik
method logLik.LogLikVector
sums the
log-likelihood contributions from individual observations.
Bernoulli
for maximum likelihood inference for the
Bernoulli distribution.
generalisedPareto
for maximum likelihood inference
for the generalised Pareto distribution.
# logLikVector.Bernoulli
bfit <- fitBernoulli(c(exdex::cheeseboro) > 45)
bvec <- logLikVector(bfit)
head(bvec)
#> [1] -0.02810136 -0.02810136 -0.02810136 -0.02810136 -0.02810136 -0.02810136
logLik(bvec)
#> 'log Lik.' -937.2539 (df=1)
logLik(bfit)
#> 'log Lik.' -937.2539 (df=1)
# estfun.generalisedPareto
gpfit <- fitGP(c(exdex::cheeseboro), u = 45)
gpvec <- logLikVector(gpfit)
head(gpvec)
#> [1] -2.626236 -2.424665 -2.524926 -2.626236 -3.149341 -2.524926
logLik(gpvec)
#> 'log Lik.' -642.3738 (df=2)
logLik(gpfit)
#> 'log Lik.' -642.3738 (df=2)