R/frequentist.R
gp_pwm.Rd
Uses the methodology of Hosking and Wallis (1987) to estimate the parameters of the generalised Pareto (GP) distribution.
gp_pwm(gp_data, u = 0)
A numeric vector of raw data, assumed to be a random sample from a probability distribution.
A numeric scalar. A threshold. The GP distribution is fitted to
the excesses of u
.
A list with components
est
: A numeric vector. PWM estimates of GP parameters
\(\sigma\) (scale) and \(\xi\) (shape).
se
: A numeric vector. Estimated standard errors of
\(\sigma\) and \(\xi\).
cov
: A numeric matrix. Estimate covariance matrix of the
the PWM estimators of \(\sigma\) and \(\xi\).
Hosking, J. R. M. and Wallis, J. R. (1987) Parameter and Quantile Estimation for the Generalized Pareto Distribution. Technometrics, 29(3), 339-349. doi:10.2307/1269343 .
gp
for details of the parameterisation of the GP
distribution.
u <- quantile(gom, probs = 0.65)
gp_pwm(gom, u)
#> $est
#> sigma xi
#> 1.77767265 0.08739445
#>
#> $se
#> sigma xi
#> 0.2605594 0.1099028
#>
#> $cov
#> sigma xi
#> sigma 0.06789120 -0.02025464
#> xi -0.02025464 0.01207863
#>